Vaccination: a way to address questions in behavioral and population ecology?

Vincent Staszewski and Thierry Boulinier

Host–parasite interactions have become an important topic in behavioral and population ecology. Among other fitness-related traits, the response to parasitism has implications for individuals, but also for the dynamics of host–parasite interactions. In this context, active immunization (vaccination) is increasingly used as an immunological tool to investigate the costs and associated trade-offs of the host immune response to parasitism. Active immunization experiments also provide information on the relationships between parasite resistance and sexual selection, and on implications of the variability of immune responses within natural populations.

A parasite can be defined as an organism living in or on another living organism (a host), which obtains part or all of its organic nutrients from the host, and causes a degree of damage to its host [1]. This broad, ecological definition includes pathogens such as fungi, bacteria and viruses, which feed in or on living organisms. These parasites have been termed microparasites, as opposed to the more classical term macroparasites.

Because parasites are such a significant part of the biotic environment of most species and vice versa, there has been much recent interest in the evolution and ecology of host–parasite interactions. Attention has focused on: (i) determining the role of parasitism as a driving force behind the behaviour of individuals [1]; and (ii) understanding the evolution and dynamics of natural populations [2–4]. This work has led to several questions such as how costly is the response to parasites and how does this cost relate to investments in other life history traits? Could parasitism affect sexual selection processes? Why does a parasite cause asymptomatic infection in one host, but can harm another? The evolutionary ecology approach stresses the importance of genotypic and phenotypic variability in natural populations: the host genotype affects susceptibility to a parasite [5] and vice versa; furthermore, it is the phenotypes of the hosts and parasites that are involved in the interactions [6], and thus environmental effects on phenotype development also have to be considered.

As a result of the intimate and often long-term nature of host–parasite interactions, natural selection has driven host–parasite coevolution [7]. There are two important features of host and parasite reciprocal responses: (i) the responses are more or less specific; and (ii) the responses can be more or less inducible [7]. Immunity is one of the host responses to parasites, which can either be innate (i.e. present regardless of the biotic environment of the individuals) or acquired (i.e. activated only in response to challenge) [8]. In this context, the acquired immune response (AIR) is of particular interest to evolutionary ecologists [9]. It is a good example of how an inducible defense can track complex changes in the biotic environment [10]. Moreover, the variability of the AIR among individuals can be related to various evolutionary processes, and its ecological implications are potentially wide [3,11,12]. The AIR is, for instance, of interest to biologists concerned with the evolution of adaptive phenotypic plasticity because of its inducibility [10], specificity and, in some cases, its ability to be transferred maternally from mother to offspring [13–15]. In addition, the mechanisms behind an AIR are complex, but well known as a result of detailed molecular and medical studies [16].

Vaccination (active immunization) is used, in most cases, to protect individuals against an infectious agent to which they could be exposed. Active immunization often relies on the humoral immune response (with the production of antibodies) elicited by exposure to an antigen, which can either be a killed or an attenuated live microorganism, or some other product with antigenic properties (e.g. sheep red blood cells). Such immune challenges are not always applied to protect individuals, but can be used to study characteristics associated with their serological response. Vaccination represents a potentially powerful tool to address fundamental questions on the evolutionary ecology of host–parasite interactions. By experimentally exposing an organism to an antigen and by controlling the context of this exposure (statistically and/or experimentally), it is possible to answer several questions related to the organism’s ability to respond to parasites. This approach can be used within natural populations to address many aspects of the evolutionary ecology of parasitic diseases [2].

Here, we focus on how active immunization has been used as a tool to tackle ecological questions at different levels, and conclude by underlining the benefits that should be gained from further links between the evolutionary ecology of host–parasite interactions and...
In doing so, the need for careful interpretations of results is stressed and some potentially fruitful lines of investigations are identified. We then consider vaccination more for its main medical and veterinary purpose (i.e. to protect individuals against infectious diseases [17]) because it provides the opportunity to discuss the evolutionary and ecological implications of immunization in natural populations.

Trade-offs and costs
The life history theory predicts that variability among individuals in the expression of a trait, here an immune response, should be a function of allocation strategies among traits and constraints [18]. According to several studies, immune response to parasites is costly and the existence of detectable trade-offs is expected [11]. Resources used to mount an immune response could be diverted from costly activities such as reproduction [19–21]. An individual facing an increase in a costly activity, such as the rearing of an experimentally increased number of offspring, could also have fewer resources to invest in its immune response [22,23]. In both cases, vaccination has been used to mimic exposure to a pathogen that would elicit a specific immune response [12] (Table 1). Individuals from different species have, for instance, been exposed to novel nonpathogenic antigens or true vaccines, and evidence of such trade-offs has been reported, although not in all cases (Table 1). Much of this recent interest in the life history implications of immunology has involved the avian immune system, and the protocols used have been inspired by immunocompetence studies in poultry (e.g. Ref. [24]). Recent studies using individuals from wild bird populations have assessed the cost of antibody production by measuring changes in their metabolic rate following exposure to an antigen [25,26]. Immune responses under different levels of cold stress have also been compared [27]. Overall, these studies suggest that, at least in certain environmental conditions, there are costs and trade-offs associated with mounting a specific immune response. In this context, vaccination appears to be a powerful tool, provided that the results are carefully interpreted. Individuals vary in their response to different antigens and in how they respond to identical antigens. Moreover, the production of antibodies after first exposure to an antigen is only one type of response among many that are involved in parasite immunity.

Vaccination reflects the complexity of natural responses to parasites, both redundant and overlapping, which depends on many factors. For instance, vaccination involves memory cells and sometimes both cell-mediated and humoral immune responses, and potential trade-offs between these responses can hinder results [3] (Box 1). Experimental design, with individuals randomly attributed to treatment and control groups, and careful choice of vaccination agent and protocol could help disentangle some of the processes at work. To date, few studies have investigated the potential interactions between the treatment and vaccination protocols used. In addition, the choice of antigen, the timing and mode of antigen administration, and sampling design (Table 2) could be important, which relates to the difficulty of attributing a level of immunocompetence to individuals and stresses that trade-offs could exist at different levels. Possessing a functional immune system does not have the same cost as responding to a particular challenge. Klasing’s article [28] highlights the need to distinguish between the low energetic cost of antibody production and the actual cost of an acute immune response involving inflammation and other physiological components of such a response. Finally, heterogeneity among individuals in the overall ability to invest in different traits will affect the patterns observed [21,29].

Immunocompetence and sexual selection
Heterogeneity among individuals will also affect mate choice. Theoretical and empirical studies have indicated
that male secondary sexual traits can convey reliable information on their ability to resist pathogens and parasites in a wide range of dimorphic species [30,31]. The degree of resistance could be reflected in secondary sexual traits, such as bright colors, which could be used as cues in mate choice. This is suggested to be the result of a trade-off between sexual trait expression and immune function [10,32]. To explain the link between a signal expressed through secondary sexual traits and immune function [10,32], Folstad and Karter [32] proposed the immunocompetence handicap hypothesis—a factor (e.g. testosterone) that enhances the development of secondary sexual traits also suppresses immunity. Several studies that tested predictions linking mate choice and immune function used vaccination protocols to assess the immunocompetence of individuals (Table 1). Duffy et al. [33] observed a positive relationship between song-bout length, a trait that is involved in mate choice in male European starlings *Sturnus vulgaris*, and humoral immunocompetence, as assessed by exposure to a novel antigen. Antigen exposure experiments assess the ability of an individual to fight parasites, rather than measuring natural parasite loads, as was performed in several earlier studies [34]. Natural parasite loads reflect past exposure to parasites and thus not only the individual’s ability to fight parasites.

Evidence of a potential immunosuppressive effect of testosterone was reported in some studies (Table 1), but the relationship between the neuroendocrine system and the immune system is complex. These systems interact via cytokines and hormonal and neuronal pathways, and constitute a finely tuned regulatory framework, distinct from single one-way action–reaction schemes [35,36]. This should be kept in mind when addressing sexual selection or stress-related topics (Box 1). Vaccination can nevertheless help define which components of the immune system are stimulated (humoral or cellular; Table 2) and at what time scale (chronic or short term).

Table 1. Ecological studies involving exposure to a novel antigen and quantification of antibody production

<table>
<thead>
<tr>
<th>Subject</th>
<th>Antigen used</th>
<th>Species (Latin name)</th>
<th>Outcome</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life history and immune function trade-offs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune challenge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphtheria–tetanus vaccine</td>
<td>Pied flycatcher (Ficedula hypoleuca)</td>
<td>Activation of immune defense results in reduced breeding success.</td>
<td>[20]</td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>European starling (Sturnus vulgaris)</td>
<td>Activation of immune defense does not reduce reproductive output.</td>
<td>[19]</td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>Tree swallow (Tachycineta bicolor)</td>
<td>Reproductive effort reduces long-term immune function in breeding tree swallows.</td>
<td>[47]</td>
<td></td>
</tr>
<tr>
<td>Manipulation of life history traits, or correlational study between a trait and immunocompetence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLH</td>
<td>Tree swallow</td>
<td>Humoral immunocompetence correlates with date of egg laying, and reflects workload.</td>
<td>[48]</td>
<td></td>
</tr>
<tr>
<td>NDV vaccine</td>
<td>Collared flycatcher (Ficedula albicollis)</td>
<td>Reproductive effort reduces specific immune response and parasite resistance.</td>
<td>[23]</td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>Zebra finch (Taeniopygia guttata)</td>
<td>Reproductive effort decreases specific immune response.</td>
<td>[22]</td>
<td></td>
</tr>
<tr>
<td>Nutritional status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>Serin (Serinus serinus)</td>
<td>Immune capacity correlates with food availability.</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Diphtheria–tetanus vaccine</td>
<td>Pheasant (Phasianus colchicus)</td>
<td>Sexual ornaments reflect nutritional conditions during early stages of growth.</td>
<td>[50]</td>
<td></td>
</tr>
<tr>
<td>Several antigens</td>
<td>Poultry</td>
<td>Nutrition affects resistance to infectious diseases.</td>
<td>[28]</td>
<td></td>
</tr>
<tr>
<td>Energetic costs of mounting an immune response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphtheria–tetanus vaccine</td>
<td>Blue tit (Parus caeruleus)</td>
<td>Cold-stressed induced immunosuppression.</td>
<td>[25]</td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>Great tit (Parus major)</td>
<td>Immune challenge increases basal metabolic activity.</td>
<td>[26]</td>
<td></td>
</tr>
<tr>
<td>Immune response and sexual selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunocompetence reflected by secondary sexual traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLH</td>
<td>European starling (Sturnus vulgaris)</td>
<td>Song-bout length reflects immunocompetence.</td>
<td>[33]</td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>Barn owl (Tyto alba)</td>
<td>Spottiess of plumage reflects immunocompetence.</td>
<td>[51]</td>
<td></td>
</tr>
<tr>
<td>Use of sexual hormones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>Fairy wren (Malurus cyaneus)</td>
<td>Testosterone treatment decreases humoral immunocompetence, but free-living males with high testosterone are more immunocompetent.</td>
<td>[52]</td>
<td></td>
</tr>
<tr>
<td>KLH</td>
<td>European starling</td>
<td>Testosterone treatment decreases humoral immunocompetence.</td>
<td>[53]</td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>House sparrow (Passer domesticus)</td>
<td>Testosterone treatment enhances expression of a sexual trait, but interacts with corticosterone to affect humoral immunocompetence.</td>
<td>[54]</td>
<td></td>
</tr>
<tr>
<td>Immune challenge affects secondary sexual traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>Blackbird (Turdus merula)</td>
<td>Immune challenge decreases intensity of bill color.</td>
<td>[55]</td>
<td></td>
</tr>
<tr>
<td>Maternal immunological effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDV vaccine</td>
<td>Barn swallow (Hirundo rustica)</td>
<td>Females mating with more attractive males (sexual ornamentation manipulated) invest more antibodies in their eggs.</td>
<td>[40]</td>
<td></td>
</tr>
<tr>
<td>SRBC</td>
<td>Tree swallow</td>
<td>No evidence of maternal transfer of antibodies.</td>
<td>[56]</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: KLH, keyhole limpet haemocyanin; NDV, Newcastle disease virus; SRBC, sheep red blood cells.
Vaccination can also be used to address the importance of the genetic basis of the processes studied. Lines of domestic chickens, *Gallus domesticus*, selected for antibody response to sheep red blood cells showed, as predicted, different secondary sexual traits (i.e. ornament sizes and testosterone levels), suggesting the existence of a trade-off between immunocompetence and ornamentation [37]. Vaccination can also address basic assumptions and predictions of hypotheses linking parasite resistance and sexual selection, such as the existence of a heritable susceptibility to parasitism in natural populations [5].

Ecology and evolution of the dynamics of immunity

An important characteristic of the humoral response, associated with its indubility and specificity, is its temporal dynamics. The level and components of the humoral immune response can vary over time and among individuals. Can the kinetics of the response to different parasites be explained in adaptive terms? Do individuals in natural populations manipulate their risk of exposure to parasites to become immunized in order to avoid the deleterious effects of potential later re-exposures? (See, for example, Ref. [38].) The costs and benefits of such strategies can be difficult to assess. One example where such strategies could be interesting to investigate is the maternal transfer of antibodies from mother to offspring [14,39]. How does earlier exposure of the mother to the antigens affect the amount of antibodies transferred [14]? Saino et al. [40] have shown that female barn swallows (*Hirundo rustica*), mated to males with elongated tails (a secondary sexual trait), will transfer more antibodies to their eggs against an antigen to which they have been experimentally exposed by vaccination than those by females mated to non-elongated or short-tailed males. The existence of such maternal effects can also be important for epidemiological studies: the maternal transfer of antibodies against rabies can affect the interpretation of temporal variability of seroprevalence in field surveys conducted in red fox *Vulpes vulpes* populations [41].

The dynamics of the immunity of individuals will have ecological consequences at population levels. Most of these implications are well known because they have been incorporated in population models for a long time [e.g. susceptible, exposed, infected, resistant (SEIR) types of models] [42]. The study of their effects on the dynamics of host–parasite interactions has benefited greatly from large-scale vaccination programmes. Comparisons of the effect of vaccination programmes on the dynamics (changes in numbers of new cases over time) of measles and whooping cough in UK cities have indicated strong spatial and non-linear effects which can be
Box 2. Vaccination and the evolution of virulence

The possibility that parasites might evolve in response to the selection pressure imposed by a vaccination programme has been explored [89]. Early studies have focused on the spread of escape mutants, which display epitopes that are not recognized by the immune system of vaccinated individuals [69,70]. Recent theoretical developments have considered alternative counter-adaptations to vaccination involving pathogen life history traits, namely virulence (induced host mortality) and transmission rate [44]. These models have incorporated evolutionary theory for virulence evolution into an epidemiological framework. This theory predicts that parasite life history traits will evolve to maximize parasite fitness. In particular, competition among parasite strains could lead to the evolution of higher virulence as a result of trade-offs between transmission and virulence. For instance, the more virulent strain in a host might have an increased probability of outcompeting other strains, and thus of being transmitted. With regard to the effect of vaccination programmes, mathematical models have been used to investigate the potential effects of vaccines that vary in their type and level of efficiency [44]. The exact outcome of the modelling will depend on the biology of each particular host–parasite interaction and on modelling assumptions [44,71–72], but vaccines designed to reduce parasite growth rate and/or toxicity are susceptible to diminish selection against virulent parasites. This could subsequently lead to the evolution of higher levels of intrinsic virulence and thus to more severe disease in nonvaccinated individuals. Conversely, vaccines designed to block infection would induce no such effects and can even select for lower virulence. This is because a parasite following a strategy that would generate optimal virulence in a resistant host will induce a different-than-optimal virulence in a susceptible host, depending on the conditions provided for virulence evolution. Vaccines that reduce the within-host growth rate of the parasite or act against toxins could select for higher virulence, if they reduce the risk of host death at no cost to the parasite, and hence reduce selection against more-virulent mutants.

This approach stresses the need to understand how different vaccines work, and the evolutionary and epidemiological implications. It also underlines the need for good knowledge of the biology of the systems considered, and for monitoring the indicators of virulence evolution as part of large-scale vaccination programmes. The theory of the evolution of virulence is likely to be applied further to different scenarios involving vaccines.

Acknowledgements
We thank Julien Gasparini, Mylène Mariette, Karen McCoy and three anonymous referees for valuable comments. Financial support was provided by the French Biodiversity Institute (I.F.B.), CNRS and Queen’s University International Visitor Programme.

References
40 Blasco, E. et al. (2001) Kinetics of humoral immune response after rabies VR-G oral vaccination of captive fox cubs (Vulpes vulpes) with or without maternally derived antibodies against the vaccine. *Vaccine* 19, 4805–4815
50 Lohssen, T. et al. (2002) Pheasant sexual ornaments reflect nutritional

http://parasites.trends.com